
.. 
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(using equation 74), the result is course, the resulting relations can also be further 
specialized to the case of an isotropic material. 

( a'Yi) _ Q D 9 (adk) aSk 9 - "Ii k + ik + 'Yj a1j 9' 
(87) Under cubic symmetry, the thermal expansion 

where 

(88) 

(89) 

The following identity was also used 10 deriving 
(87): 

(90) 

Relations between the derivatives of the isother­
mal and isentropic elastic moduli can be derived as 
follows. Define 

I-'-ij = c ij - c ~ = ()AiAdpC, = ()pC,'Yi"/i. (91) 

Differentiating (91) and using (87), 

(;j:) B = S~k(Rij" - l-'-ijQ,,), (92) 

where 

S9 (aSi) (9) - 1 ij = a1j B = C ii , (93) 

i.e. S~ are the isothermal elastic compliances, and 

R Uk = ()PC,[ a ~~:j ) 1 (94) 

= 2l-'-ijQ. + ()pAiD7k + ()pAP? + I-'-/iC 7k., + l-'-'jC 1 •. " (95) 

where a comma preceeding a subscript denotes 
differentiation with respect to the corresponding 
stress component. 

Similarly, differentiating (91) with respect to (), 
and using (90) , 

(a ~~il())T = I-'-i{ 1 + (~JI~ ~,).J + ()PC,[ ~(T~'Y~l 

+()Ak(~t (96) 

The relations developed so far in this section, 
i.e. equations (81), (83), (87), (92) and (96), are 
completely general in that they refer to a material 
of arbitrary symmetry under an arbitrary stress. 
They will now be specialized to the case of a 
material of cubic symmetry under a hydrostatic 
stress. As was pointed out in Section 2, only one 
strain parameter is required in this case, so that the 
application of these relations is simplified. Of 

tensor becomes 

(97) 

Thus, 

(98) 

where K9 is the isothermal bulk modulus , and 

(99) 

Note, in particular, that 1-'-" = 1-'-12 and 1-'-" = O. 
Under hydrostatic stress , Ti = - P8i, where P is 

the pressure, and the strain of a material of cubic 
symmetry can be specified by the specific volume 
V. Thus 

[ (a In Cv) ] Qi = 1 - a In V B 8i = Q8i , (101) 

D9 "I (ac ~) 89 ij = - aK
9 

ao p = "I ij, (102) 

where 8 ~ is the generalized isothermal analogue of 
the Anderson-GrOneisen parameter [17, 18]. With 
these results, equation (87) becomes 

(~;t = 'Y[ QMj + 8 ~ - (~i)J (103) 

There are three independent derivatives of 1" in this 
case, just as there are three independent compo­
nents each of C ~ and 8 ~. Note that Q does not 
contribute to (a'Y.! as.). It may also be noted that 
this derivative is non-zero , even though under cubic 
symmetry "I. is zero. This is because the strain s,' 
destroys cubic symmetry, thus allowing "14 to vary 
from zero as S . varies from zero. From (103) 

(a Jan'YV) B ='Y[Q+8 B _(~~tl (104) 

where 8 9 = (8f, + 2M2)!3; (104) was given by Basset 
et at. [19]. 

To specialize equations (92) and (96) , note first 
that 

and that S".8k = 8" !3KB• Then 
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(105) 

and 

(alLii) = (aIL) 55 ap 0 ap 0 ' 1 

= - ko [2(: I~ ;)0 - QJ8i8i . (106) 

The specialization of equation (96) is 

(aIL) =E:[I+(alnCv) +2(aln"Y) J_A(alL). a8 p 8 a In 8 vaIn 8 v ap 
(107) 

Relations equivalent to (106), (107) were given by 
Barsch [20]. 

Finally, note that equation (104) involves the 
derivatives of the isothermal elastic modulus, 
whereas it is usually the derivatives of the isen­
tropic modulus which are measured experimen­
tally. The conversion from the temperature deriva­
tive of one to the other involves (alL/a8)p, which 
involves (alL/ap)o, whjch in turn involves 80

• Equa­
tions (102) , (104), (106) and (107) can be solved for 
(alL/ap)o in terms of just derivatives of isentropic 
quantities: 

( aIL) =....!:!:... {2( aKU) _ Q + l (aKu
) ap 0 Ko ap 0 A a8 p 

_ 2"Y[1 + (a In Cv) + 2(a In "Y) ]}. (l08) a In 8 vaIn 8 v 

s. DISCUSSION 

The comments made in Paper I , Section 4, 
concerning the independence of the approxima­
tions made in the thermal and finite strain parts of 
the theory, the Griineisen approximation, the ex­
pansion of "Y as a function of volume, the relation­
ship of this work to that of Thomsen [3,4] and the 
capabilities of this theory all apply here in the more 
general case. In particular, note that this theory pre­
dicts that the Cap are non-linear in temperature at 
high temperature and constant pressure [4], and that 
the (a 2caP/aPaT) are non-zero, in general. Thus, a 
non-zero value of one of these mixed derivatives 
does not necessarily mean that a higher order ther­
mal theory is required. Tests of the adequacy of the 
quasi-harmonic theory will be discussed in a subse­
quent paper. 

The more general theory given here contains the 

special theory of Paper I, which can be obtained 
through the relations (34-36), (56) and (57) . It is thus 
a theory of great utility which is capable of 
describing the effects of shock-compression and 
isothermal compression as well as the elastic mod­
uli and elastic velocities as functions of pressure 
and temperature. Applications demonstrating this 
utility will be given in a subsequent paper. 

The primary parameters which enter these equa­
tions are the r ~p or t:p of (25) and (30), the ga and h aP 

or h ~p of (43) and (45), and the density in the 
reference state, po. These are related to a similar 
number of secondary parameters: to Cap, C ~P' etc. 
through (26-28) or (31-33), to the thermal expan­
sion tensor, CXp, through (51) and (83), and to the 
temperature derivatives of the elastic moduli 
through (52) and (87-89). In the case of cubic sym­
metry and hydrostatic prestress, the volume coeffi­
cient of thermal expansion, cx, enters through (99), 
and the temperature derivatives of the c aP through 
(58-60), (64-66) and (101-103). The evaluation of 
these parameters follows a scheme analogous to 
that outlined in Paper I. 
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